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An iteration method of calculating pressure by solving Navier–Stokes equations in stream function–vortex vari-
ables is proposed. A numerical investigation of the drag and the rotational properties of cascades of circular
cylinders at small and moderate Reynolds numbers has been carried out.

Introduction. In investigating a flow around a blade cascade it is important to know the dependence of the
drag and the rotational properties of the cascade on its spacing, the velocity of the flow, and the angle of its inci-
dence. The problem was solved for a particular case of high flow velocities where the parameters of the flow depend
only slightly on the Reynolds number [1–3]. For example, the rotational properties of cascades in the case where a gas
flow is incident on them at an angle close to π/2 have been experimentally investigated in [3]. In this case, the refrac-
tive index of a cascade of a round wire is determined as

α = tan α+ ⁄ tan α−
 . (1)

It has been established empirically that the dependence of the refractive index of such a cascade on its drag C has the
form α = 1/√1 + C .

The present work is devoted to theoretical investigation of the drag and the rotational properties of a cascade
at moderate Reynolds numbers Re > 1 at which both the inertial and the viscous forces are significant and a stationary
laminar vortex wake is formed downstream of each of the circular cylinders composing the cascade. This regime of
flow is characterized by the fact that the main hydrodynamic parameters depend substantially on Re. Various formula-
tions of the boundary-value problems for Navier–Stokes equations in stream function ψ–vorticity ω variables were
used in the calculations.

Calculation of the Cascade Drag. In calculating the drag coefficient C we separated a periodicity cell — a
tube of flow of width H — and numerically solved the problem on a steady symmetric flow around an individual cyl-
inder of unit radius, at the boundary streamlines of which y = %H ⁄ 2 the ideal slipping conditions were set. It was as-
sumed that at a large distance from the obstacle (x → %∞) the flow is uniform, ψ = y and ω = 0. In this case, the
boundary of the streamlined cylinder Γ is a zero streamline ψ = 0 at which the adhesion conditions ∂ψ ⁄ ∂n = 0 are
additionally set.

The stationary fields of ψ and ω are determined by solving the evolution problem with the use of algorithms
traditional for equations of this type [4, 5]. At each time step, the vorticity-transfer equation and the Poisson equation
for the stream function are solved successively, and the nonlinear convective terms in the equation for ω are taken
from the previous time layer. Approximation of the Navier–Stokes equations and calculations are performed by the
first-order finite-element method (FEM) on irregular grids bunching to the contour Γ [6]. The enumeration of the
FEM-grid nodes is optimized with the use of a minimum-power algorithm, which provides a band structure of the ma-
trices of the FEM linear systems and minimizes the calculations necessary for their inversion by the Kholetskii
method. Since the desired functions change significantly only in the neighborhood of a streamlined body, the use of
FEM grids that are fine in this region and coarse outside it plays a crucial role in decreasing the calculations. A test-
ing of the algorithm on a series of bunching grids has shown that a fairly accurate solution of the problem can be
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obtained even on a grid of 6500 triangles with a ratio between the areas of the large and small elements of the order
of 100. At Re = 30 and a time step τ = 0.05, a stationary solution is obtained in 910 steps (t = 45.5) and the time
of calculations on an Athlon-1700 computer is 17 sec.

The pressure is calculated by the known equation [4]
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



∂2ψ

∂x
2  

∂2ψ

∂y
2  − 





∂2ψ
∂x∂y





 2


 . (2)

The Neumann condition ∂p ⁄ ∂n = 0 is set at all the outer boundaries of the computational region D and the Pirson
condition is set at the boundary of the streamlined cylinder [4]:
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The difficulties associated with the numerical solution of problem (2)–(3) are described in a number of works
[4, 7, 8]. For example, Roache [4] points to the degeneracy of this problem and proposes a condition at which it can
be overcome. This condition is not fulfilled exactly in the calculations; therefore, the right-hand side of Eq. (2) is re-
placed by

f
_
 = f − sf t ,   sf t = 

1

 D
 ∫ 

D

f dxdy = 0 , (4)

and, to obtain a unique solution, it is recommended to set the Dirichlet condition at a part of the boundary; for exam-
ple, p = p1 = 0 as x → −∞.

However, this technique does provide a stable solution, which becomes most evident in the case where the
pressure of a cascade with a small spacing is calculated. This is explained by three complicating circumstances:

(1) the low accuracy of the determination of the right side f of Eq. (2) expressed in terms of the second de-
rivatives of an approximate grid solution with respect to ψ;

(2) the large elongation of the D region (in the calculations, the boundaries positioned at an infinite distance
from the obstacle x = %∞ are replaced by the finite boundaries x = %L,  L  >> 1);

(3) the structure of the right side of the constitutive equation (f in formulation (4) differs from zero only in
the neighborhood of the streamlined body, whose dimension is comparable to the length of the vortex wake).

The first two circumstances are responsible for the errors in the calculation of the pressure. It is easy to show
that the error ε in f can lead to an error of the order of εL2 in p. To decrease ε at the stage of calculation of the
pressure, it is necessary to refine the stream function ψ by solving the problem −∆ψ = ω over again with the use of
third-power finite elements. This makes it possible to determine the right side f of Eq. (2) with sufficient accuracy.

Because of circumstance (3) and the Neumann boundary conditions, the desired solution has the following
structure. The pressure changes substantially only in the above-mentioned neighborhood of the body and is constant
outside it. In this case, the pressure difference p1 − p2 = −p2 = p(L) determines the drag coefficient of the cascade C
= −p2. On the other hand, the coefficient C can be calculated by integrating the viscous and pressure forces over the
streamlined contour [5]:

C = (Cf + Cp) ⁄ H = ∫ 

Γ

[Re
−1

 ω cos (s, x̂) + p sin (s, x̂)] ds ⁄ H . (5)

This allows one to construct an iteration algorithm that would make it possible to obtain a stable solution of Eq. (2). As
the initial approximation, a solution of problem (2)–(3) with the Neumann condition in the cross section x = L serves.
In the subsequent iterations, formula (5) for the drag coefficient C, by which the pressure p2 is refined at the boundary
x = L, is used in each step and the problem with the Dirichlet conditions p(−L) = 0 and p(L ) = p2 is solved. The
calculations show that three or four iterations would suffice to attain the convergence (C is determined with an accuracy
of the order of 10−4). An example of the calculation is presented in Fig. 1. It shows all the features of the pressure
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distribution: p remains unchanged at any distance from the obstacle upstream and downstream of it, the pressure in-
creases abruptly on the windward side of the cylinder, and the pressure is depressed at the bottom of the cylinder.

The numerical algorithm was tested for the case of an infinite flow around an individual circular cylinder con-
sidered as a limiting case of a cascade as H → ∞ and in the range 1 ≤ Re ≤ 40. It has been established that the influ-
ence of the computational region boundaries on the solution becomes negligibly small at H > 40. In the process of
testing we compared the streamlines, the constant-vorticity lines, the distribution of p and ω over the contour of the
cylinder, and the dependences of the angle of flow separation, the length of the vortex region, and the drag coefficient
CD = CH on the Reynolds number. As the testing data, we used the calculations of ψ and ω of different authors [9],
the photographs of a separation flow [10], the pressure distribution over the contour of a streamlined body calculated
by Apelt and Kavaguti and obtained experimentally by Thom [5, 7, 9], and the numerical dependences of the vortex-
region length [9, 11] and the angle of flow separation on Re [5, 12]. The dependences of CD, Cf, and Cp on Re were
tested by the analytical and numerical solutions, the empirical data [11–13], and the data generalized in [5, 9]. We also
used the data obtained with a universal FLUENT package. The calculated p is closest to the Kavaguti curve, and the
distribution of ω over the contour of the cylinder differs from that of [5] by approximately 3% on the leeward side
of the cylinder. The calculated curve CD(Re) passes through the upper experimental points of different authors. The
other results of the numerical modeling agree well with the test data.

The results of the calculation of the cascade drag in the form of the dependences of C, Cf, and Cp on Re and
H are presented in Fig. 2.

It should be noted that in the case where the Reynolds number changes in the range 1 ≤ Re ≤ 4, the flow in
the cascade is unseparated. At Re ≥ 5, a pair of stationary vortices arise downstream of each of the cylinders inde-
pendently of the cascade spacing. The critical Reynolds number, at which an instability begins to develop and a
Ka′rma′n vortex street appears, depends on H. For example, for a cascade with a spacing of H = 40 (an unbounded
flow) the critical Re is equal to 41, and for a cascade with a spacing of H = 4 the regime of flow changes at Re =
62.

Determination of the Rotational Properties of a Cascade. Despite the fact that the profile of the elements
of cascades of circular cylinders is not directional, these cascades can rotate the flow [2, 3]. This is supported by the
results of numerical modeling of a uniform flow of a viscous fluid incident on a cascade of 15 cylinders from the left
at an angle α− (see Fig. 3).

As the flow passes through a row of cylinders, its velocity vector rotates through an angle α+ ≤ α− (in mod-
eling, the angle of incidence α− is prescribed and the angle of outflow α+ is determined from the pattern of the cal-

Fig. 1. Pressure distribution in the symmetric flow around a cascade with a
spacing H = 4 at Re = 30. The figure is crimped along the x axis.

Fig. 2. Dependence of the drag coefficient of the cascade C on the Reynolds
number Re and the spacing H. The dashed and dash-dot lines denote the fric-
tion drag coefficient and the pressure drag coefficient for H = 40.
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culated streamlines, as shown in Fig. 3). It is evident that at a large distance from the obstacle, downstream of it, the
direction of the flow is determined by the shape of the outer boundaries of the computational region which are formed
by the straight walls with angles of inclination β− = α− upstream of the cascade and β+ downstream of it. However,
the influence of the directions β− and β+ on α+ is small, especially for the central streamlines. Therefore, the coeffi-
cient α is determined in the process of successive approximations, in each of which the angle β+ = α+ is refined, the
finite-element grid is constructed over again, and the Navier–Stokes problem is solved. The process is converged in
two or three iterations. The index of refraction α is determined by formula (1).

In the course of the numerical experiment performed, by the above-described method we determined the in-
fluence of the Reynolds number Re and the cascade spacing H on the refractive index α (Fig. 4). It is seen that α
increases with increase in Re and H.

It should be noted that at a nonzero angle of incidence a pair of steady vortices lose stability at smaller val-
ues of Re than in the case of a symmetric flow. For example, for a cascade with a spacing H = 4, the critical
Reynolds numbers are equal to 25 and 62 for α− = 26 and 0o respectively.

By and large, the index α depends not only on the Reynolds number and the cascade spacing, but also on the
angle of incidence of the flow α−. However, our calculations have shown that this influence is negligibly small. More-

Fig. 3. Lines of the asymmetric flow around a cascade with a spacing H = 6
at Re = 20.

Fig. 4. Dependence of the refractive index of the cascade α on the Reynolds
number Re and the spacing H.

Fig. 5. Dependence of the refractive index α on the drag coefficient for a cas-
cade of circular cylinders. Numerical experiment (points) and approximation by
formula (6).
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over, comparison of the results of the numerical modeling presented in Figs. 2 and 4 has made it possible to find the
dependence of α on C(Re, H) (see Fig. 5). It turns out that the function α(C) can be approximated in the form

α = (1 + C)−1.4
 . (6)

with a root-mean-square deviation of 3%. According to expression (6), the higher the drag of the cascade, the larger
the deflections of the flow caused by it.

CONCLUSIONS

The results of the numerical modeling of a steady separation laminar flow of an incompressible viscous fluid
around a cascade of circular cylinders have shown that, in a wide range of change in the flow parameters, the refrac-
tive index of the cascade is determined by a single parameter — its pressure loss. Only the refractive index deter-
mined by formula (1) possesses this property. If α is determined as the ratio between the sines of the angles α− and
α+, α depends substantially on all three parameters of the flow: the Reynolds number Re, the cascade spacing H, and
the angle of attack α−.

This work was carried out with financial support from the Russian Basic Research Foundation (project 03-01-
00015).

NOTATION

C, hydrodynamic drag coefficient of the cascade; CD, Cf, Cp, drag coefficient of a cylinder, friction drag co-
efficient, and pressure drag coefficient; D computational region; f and sf t, right side of the equation for the pressure
and its mean; H, cascade spacing; L, number modeling infinity; n and s, normal and tangent to the boundary of the
streamlined body; p, pressure; p1 and p2, pressure in the cross sections x  = −L and x = L; Re, Reynolds number; t,
time; x, y, Cartesian coordinates; α, refractive index of the cascade; α− and α+, angles formed by the normal to the
cascade and the velocity vector of the flow upstream and downstream of the row of cylinders; β− and β+, angles of
inclination of the computational region boundaries upstream and downstream of the cascade; Γ, boundary of the
streamlined body; ε, error of the right side of the equation for the pressure; τ, time step of the numerical method; ψ,
stream function; ω, vorticity.
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